لافتة الصفحة الداخلية
ore color sorters
  • How to Avoid Ore Waste in Ore Processing How to Avoid Ore Waste in Ore Processing Aug 10, 2024
    Yesterday, one of my foreign customers told me that he is facing a serious dilemma, that is, the problem of ore waste in ore processing. This customer has his own mine and ore processing plant, and the overall output is 5,000 tons of finished products every month. The monthly output is not large, but the ore waste caused is not small. Today, let's discuss the ore waste problems faced in ore processing and the causes of these problems, and analyze these causes to further find ways to avoid these problems. First of all, we will discuss the links and causes of ore waste in ore processing. Generally speaking, in the ore processing process, waste mainly occurs in the following stages: 1. Mining stage: Improper mining methods or unreasonable mining sequence may cause useful minerals to be excavated together with waste rocks, resulting in ore loss. (Because this article mainly discusses the problem of ore waste in ore processing, the mining stage will not be discussed in detail.)     2. Transportation and handling stage: Ore may be scattered during transportation, especially in long-distance transportation or bad weather conditions, which will lead to the loss of usable ore. 3. Ore crushing and screening: If crushing and screening are not done properly, the ore may be over-crushed or the particle size distribution may be unreasonable, thus affecting the efficiency of subsequent processes and the mineral recovery rate. 4. Grinding and classification: Grinding is an important step to improve the degree of mineral dissociation, but if it is not properly controlled, it may cause energy waste and mineral loss. In addition, inappropriate classification may cause useful minerals to mix with gangue, reducing the recovery rate. 5. Mineral sorting stage: During the mineral processing process, due to improper equipment performance, operation or unreasonable process parameter settings, the separation of useful minerals from gangue may not be thorough, resulting in a decrease in recovery rate. Including gravity separation, flotation, magnetic separation, etc., the efficiency of these processes directly affects the final mineral recovery rate. Improper selection of mineral processing methods or inappropriate operating conditions may cause a large amount of valuable minerals to be left in the tailings.     6. Concentration and dehydration: In the final stage of mineral processing, concentration and dehydration are to reduce the amount of tailings and obtain concentrates suitable for transportation and further processing. If these steps are inefficient, energy consumption and processing costs will increase. 7. Tailings treatment stage: Poor tailings management, such as improper tailings pond design or improper tailings treatment, may result in the failure to effectively recover useful minerals and waste resources. The reasons for these wastes include: 1. Technical level: backward mining and mineral processing technology may lead to inefficiency and waste of resources. 2. Poor management: Lack of effective resource management and supervision may lead to unnecessary losses. 3. Equipment failure: Aging or improper maintenance of equipment may lead to reduced production efficiency and ore loss. 4. Environmental factors: Complex geological conditions or extreme weather conditions may affect the processing and transportation of ore, increasing the risk of loss. In order to reduce these wastes, it is necessary to adopt modern mining and mineral processing technology, optimize process flow, strengthen equipment maintenance and management, and implement strict environmental protection measures. How to operate specifically, we still need to come from practice, go to practice, and optimize our ore processing process according to each stage. 1. In view of the waste caused by the transportation stage, mining companies can optimize the transportation route planning, try to find the transportation route, reduce the transportation time and cost, and consider environmental factors, try to avoid transporting ore in bad weather and bumpy roads, and improve the stability of transportation; use suitable transportation tools, such as electric wheel loaders and large mining trucks, and implement systematic management of the fleet and tracking monitoring.     2. In view of the waste caused by the ore crushing and screening stage, mining companies can use primary crushing, secondary crushing and tertiary crushing to classify the ore, and choose different crushing equipment according to the properties of different ores, for example: jaw crusher is suitable for coarse crushing, cone crusher is suitable for medium and fine crushing, impact crusher is suitable for medium and fine crushing of soft and medium hard materials, and high-efficiency crushing technology can also be introduced, such as new hydraulic cone crusher, which can more accurately control the work of the crusher and improve the crushing effect.     3. In view of the ore waste caused by the grinding and classification stage, mining companies can use closed grinding system and suitable grinding machine. A closed grinding system is a grinding process in which the grinding equipment and its matching classification equipment form a closed-loop circulation system. In this system, the material after grinding is first classified by the classification equipment, and the unqualified coarse-grained material is returned to the grinding equipment for re-grinding, while the qualified fine-grained material flows to the next process. In this way, the closed grinding system can effectively control the product particle size, reduce over-grinding, and improve grinding efficiency and product quality.   The process of closed-circuit grinding usually includes the following steps: 1) Feeding: The raw materials are fed into the mill for preliminary crushing and grinding. 2) Classification: The material after grinding enters the classification equipment, such as a spiral classifier or a hydrocyclone, for classification. 3) Return sand: The coarse-grained material (return sand) separated by the classification equipment is returned to the mill for re-grinding. 4) Circulation grinding: The return sand enters the mill together with the fresh feed ore to form a circulation grinding process. 5) Finished product discharge: After multiple cycles of grinding, the material that reaches the required particle size is discharged by the classification equipment as a finished product. In the closed-circuit grinding process, the control of grinding efficiency and product particle size depends on the working efficiency of the classification equipment and the adjustment of the return sand ratio. The return sand ratio refers to the ratio of the return sand amount to the new feed amount. The optimization of this ratio is crucial to achieve efficient grinding. Depending on the properties of the ore, the following closed-circuit grinding equipment can be selected: 1) Ball mill: suitable for fine grinding of most hard ores, and can form a closed-circuit system with spiral classifiers or high-efficiency screening equipment. 2) Rod mill: suitable for coarse grinding or pre-grinding, especially when processing brittle materials, it can be used in conjunction with grid-type or overflow classifiers. 3) Autogenous mill: suitable for processing certain specific ores, with low energy consumption, but with certain requirements for the hardness and grindability of the ore. When selecting closed-circuit grinding equipment, it is also necessary to consider the number of grinding stages, whether it is closed-circuit grinding, and the conditions of different classification operations. These factors jointly determine the design of the grinding process to ensure the best grinding effect and economic benefits. In the closed-circuit grinding process, the commonly used classification equipment mainly includes the following types: 1) Spiral classifier: According to the immersion state of the spiral shaft, the spiral classifier can be divided into high weir type and submerged type. The high weir spiral classifier is suitable for coarse particle classification, while the submerged spiral classifier is suitable for fine particle classification. The spiral classifier classifies the material after grinding and discharges the coarse particle material through the rotation of the spiral blade. 2) Hydrocyclone:It uses the centrifugal force of the water flow for classification and is suitable for materials of various particle sizes. There is a conical cylinder inside the hydrocyclone. The material and water enter the cylinder together. Due to the action of centrifugal force, materials of different particle sizes are separated. 3) Cone classifier: Classification is carried out through the free fall motion of the material in the conical cylinder and the action of centrifugal force. The cone classifier is suitable for the classification of medium-sized materials and can effectively separate fine and coarse particles. 4) Trough classifier: It consists of an inclined trough body. The material settles under the action of gravity and the inclination angle of the trough body to achieve classification. The trough classifier has a simple structure and is suitable for the preliminary classification of larger block materials. These classification equipments have their own characteristics and are suitable for different grinding conditions and material characteristics. In actual production, the appropriate classification equipment is selected according to the requirements of the grinding process and the physical properties of the ore to achieve the best grinding effect. The vertical mill is a high-efficiency grinding equipment, which is mainly used for grinding materials of various hardness, such as cement raw materials, coal, slag, etc. Its working principle is to achieve material crushing and grinding through the rolling friction between the grinding roller and the grinding disc. The main components of the vertical mill include grinding rollers, grinding discs, bearings, reducers, motors, separators and fans. The materials are crushed by the grinding rollers in the grinding disc and are separated and transported under the action of wind.     The vertical mill integrates crushing, drying, grinding and classification, simplifies the process flow, reduces the number of equipment, reduces investment and operation and maintenance costs, and the overall sealing design and full negative pressure operation reduce dust spillage, reduce environmental pollution and also reduce ore loss. 4. For the waste caused in the mineral sorting stage, mining companies should choose appropriate mineral sorting methods according to the characteristics of the ore, optimize the mineral sorting technology, improve the automation and intelligence level of mineral sorting, and effectively reduce the errors of manual operation. Mingde Optoelectronics Technology Co., Ltd. has been devoted to the research and production of intelligent sorting equipment for mining for ten years, and has successively launched Mingde ore color sorters and Mingde AI intelligent ore sorters, introducing artificial intelligence technology and big digital technology in the field of mineral processing, and further improving the efficiency and accuracy of mineral processing. The heavy-duty ore sorter launched by Mingde in 2022 can sort ores with a particle size of 8-15cm, bringing the hourly output of the ore sorter to 200 tons, meeting the requirements of large-scale pre-sorting of large mining companies, and reducing the pressure of subsequent flotation in large quantities, which is more energy-saving and environmentally friendly.     CCD Sensor Based Ore Color Sorter Mingde ore sorter can establish a sorting mode according to the user's sorting needs, and realize accurate sorting of ores of different particle sizes and types; customers can also adjust the machine parameters and the sorting accuracy according to their actual situation to meet the diversified and personalized sorting requirements of users. The whole machine is highly intelligent, and can continuously improve the sorting effect through the machine's learning mode. It can realize remote debugging, intelligent monitoring, remote service, and remote software upgrades to help customers enjoy the latest photoelectric mineral processing technology. Heavy Duty AI Mineral Sorting Machine The vibrating feeding part and the main body of the equipment adopt a split structure to avoid the impact of the vibration of the hopper on the main machine during the feeding process, making the equipment run more stably. In contrast, the main body of the sorting adopts a closed whole machine structure, which enables the machine to better adapt to the requirements of harsh environments such as high dust, high pollution, and high corrosion in the industrial and mining industries. 5. For the waste generated during the concentration and dehydration process, mining companies can adopt the following methods to improve the recovery rate of ore. 1) Optimize equipment design: Select efficient concentration equipment and dehydration equipment, such as high-efficiency deep cone concentrators and vibrating inclined plate high-efficiency concentrators. These equipment can handle more materials and improve material handling capacity and efficiency. 2) Adjust operating parameters: Reasonably adjust the operating parameters of the concentrator and dehydration equipment, such as feed rate, flocculant addition, etc., which can significantly improve the equipment's processing capacity and reduce energy consumption. 3) Implement intelligent control strategy: Use modern automation technology to establish an intelligent control system for the concentrator, monitor and adjust the working parameters in real time, so that the equipment always maintains the best operating state and reduces the loss caused by improper operation. 4) Application of new materials and new equipment: The use of high-wear-resistant materials to manufacture key components of the equipment can significantly extend the service life of the equipment, reduce the maintenance frequency, and improve the overall processing capacity and efficiency. 5) Improve the technical level of operators: Improving the technical level and operating ability of operators through regular training and education is an important measure to improve the processing capacity of equipment. 6) Real-time monitoring and intelligent control system: The introduction of real-time monitoring and intelligent control system can realize real-time monitoring and automatic adjustment of the operating status of the equipment, and improve the sorting efficiency and safety. 6. For the waste caused by the tailings treatment stage, mining companies can further recycle the tailings that have been discharged after preliminary beneficiation treatment to extract the remaining valuable metals or non-metallic minerals. For the tailings generated during the beneficiation process, mining companies can also treat and reuse them in a variety of ways to reduce environmental pollution, save resources and energy, and transform them into a collection of technologies for valuable products. These technologies include but are not limited to the physical and chemical treatment of tailings, and the use of tailings as raw materials in building materials, filling materials and other fields. The purpose of tailings comprehensive utilization technology is to maximize the utilization of tailings resources, reduce the construction and maintenance costs of tailings ponds, and reduce the negative impact on the environment. Common types of tailings comprehensive utilization technologies include: 1) Tailings backfill: Use tailings as filling materials in mine goafs to reduce surface collapse and environmental damage. 2) Tailings sand making: Use tailings as construction sand after treatment. 3) Production of building materials: Use tailings to produce cement, bricks, aerated concrete and other building materials. 4) Soil conditioner: Tailings can be used to improve soil structure and increase soil fertility. 5) Environmental remediation materials: Tailings are used for the solidification and stabilization of heavy metal contaminated soil. In short, avoiding ore waste caused by ore processing and improving ore recovery rate are of great economic and environmental significance to the mining industry. Economically, by improving ore recovery rate, the effective utilization of mineral resources can be increased, resource waste can be reduced, and the economic benefits of enterprises can be improved. This is particularly important in the context of increasingly scarce resources, as it helps extend the service life of mines and maintain the stability of the supply chain. Environmentally, improving ore recovery rates helps reduce the amount of tailings produced and reduce the burden on the environment. The reduction of tailings ponds can reduce the risk of geological disasters, reduce pollution to water resources and soil, protect the ecological environment, and achieve sustainable development of the mining industry. In addition, improving ore recovery rates is also in line with national policies and regulations, responding to the call for comprehensive resource utilization and environmental protection. The government encourages the use of advanced technologies and management measures to improve resource utilization efficiency and reduce environmental pollution, which has a positive impact on the long-term development of enterprises and the fulfillment of social responsibilities. There is still a lot to discuss about how to avoid ore waste in ore processing. Today we have discussed each link one by one. If you still have questions you want to ask or have your own unique understanding, we welcome you to actively share.
  • Market Application and Sorting of Calcite Market Application and Sorting of Calcite Aug 15, 2024
    Calcite is a common calcium carbonate mineral with the chemical formula of CaCO3, which is widely used in various fields. Its crystal forms are diverse, which can be flake, plate, cone, column, etc., and the colors are different, including colorless, white, pink, green, yellow, red, blue, gray and black. The variability and rich colors of calcite make it one of the important ornamental minerals. Calcite belongs to the trigonal system and has a calcite family structure of the island carbonate mineral subclass. It has various forms. According to statistics, there are more than 600 different polymorphs. The physical properties of calcite include Mohs hardness 3 and density of about 2.71g/cm³. It has complete cleavage in three directions and can form rhombus-shaped fragments. The chemical properties of calcite are soluble in hydrochloric acid, so it needs to be carefully protected during transportation and cleaning. The application range of calcite is very wide, covering many fields such as construction, chemical industry, metallurgy, and medicine. Building materials In the field of construction, calcite is one of the most important rock-forming ores and is widely used in the production of cement, lime and other building products. Its addition can improve the process properties of materials and increase strength and durability. For example, calcite is an indispensable raw material in the manufacture of building materials such as limestone and marble. In addition, calcite is also used in the production of decorative materials such as architectural coatings and wall coatings to provide better whiteness and gloss. Chemical industry In the chemical industry, calcite, as one of the main sources of calcium carbonate minerals, is widely used as a chemical additive and filler. It can be used to manufacture chemical products such as plastics, rubber, paints, and coatings to improve the physical properties and process properties of the products. Especially in the papermaking industry, calcite, as a filler, can improve the gloss and smoothness of paper. Metallurgical industry In the metallurgical industry, calcite can be used as a flux in the ironmaking process to reduce the furnace temperature, accelerate the reduction reaction of iron ore, and increase the yield of pig iron. At the same time, it can also be used as a desulfurizer in steel smelting, converting sulfides in molten iron into volatile substances, reducing the sulfur content in steel and improving the quality of steel. In addition, calcite can also be used as a sand core material in the foundry industry to improve the surface quality and dimensional accuracy of castings. Medical field The application of calcite in the medical field is reflected in its use as a source of limestone, which can be used to make lime and then as a raw material in pharmaceuticals. Lime can be used to make calcium agents, such as calcium tablets, calcium powder, etc., for the prevention and treatment of calcium deficiency. Other uses The birefringence of calcite also makes it uniquely used in the optical field, such as for the manufacture of optical instrument components such as polarizing prisms. In addition, calcite is also used in food additives, environmental protection treatment and other fields. In order to achieve the above market applications, calcite sorting is essential. At present, the more common calcite sorting methods on the market are gravity separation, magnetic separation, flotation and photoelectric separation. Among them, the gravity separation method uses the difference in density between calcite and other minerals to achieve separation by gravity separation. This method is suitable for the sorting of ores with large density differences. Magnetic separation is to separate ores with magnetic differences through magnetic separation technology. This is often used to distinguish between magnetic minerals and non-magnetic minerals. Because both separation methods have certain limitations. Gravity separation equipment usually requires a large site, which increases the investment in infrastructure, and the accuracy of gravity separation is not high, and the separation effect is not ideal. Magnetic separators are mainly suitable for finer magnetic particles. For larger particles, the separation effect may be limited. At the same time, the separation effect for non-magnetic ores and impurities is not ideal. In addition, like gravity separation equipment, magnetic separation equipment also requires a large site and requires increased investment in infrastructure. Photoelectric separation is mainly used to sort calcite through ore color sorters. Ore color sorters use the differences in the optical properties of ores for sorting, and use high-resolution CCD image sensors and high-speed computing processing units to quickly identify and separate ore particles. This technology not only improves the efficiency and accuracy of sorting, but also reduces environmental pollution and energy consumption. CCD Sensor Based Ore Color Sorter As an emerging ore sorting technology, photoelectric sorting technology has shown many significant advantages in the application of calcite sorting. High efficiency Photoelectric separation technology can quickly remove a large amount of useless gangue, reduce the pressure of subsequent mineral processing links, and improve separation efficiency. This technology can process a large amount of materials in a short time, and has high separation accuracy, which helps to improve the grade of calcite. Low cost Compared with traditional physical and chemical mineral processing, the only energy consumption of photoelectric separation is electricity consumption, and the cost of mineral processing per ton is about 1 yuan, which is much lower than the average cost of traditional methods. Green and environmental protection Photoelectric separation has zero pollution to the environment and is a greener way of mineral processing. This is especially important today when environmental protection is increasingly valued. Technological progress With the development of computer technology and artificial intelligence technology, the intelligence level of photoelectric separation equipment has been continuously improved, which can better adapt to the separation needs of different types and complex ore structures. Strong adaptability By introducing cutting-edge technologies such as artificial intelligence and big data analysis, the intelligence level and adaptability of the photoelectric separation system have been greatly improved, and it can process more types of ores. High safety Photoelectric separation equipment does not need to add any chemical agents during operation, avoiding the safety risks that may be caused by chemical agents. Hefei Mingde Optoelectronics Technology Co., Ltd. has been professionally engaged in the research and production of intelligent sorting equipment for mining for more than ten years. Its ore color sorter and AI ore sorter have excellent performance in the sorting of calcite, especially the AI ​​artificial intelligence sorter, which can accurately extract and distinguish the surface features of calcite and miscellaneous stones, and achieve high-precision sorting. The machine can produce about 200 tons per hour, which can meet the production needs of large mines. MINGDE AI Sorting Machine Flotation technology, as an efficient mineral processing method, also plays an important role in the sorting of calcite. With the development of technology, the flotation methods of calcite have also become different, and we will introduce them separately. Traditional flotation separation Traditional calcite flotation separation mainly relies on the action of chemical agents, including the use of inhibitors and collectors. Inhibitors are used to reduce the floatability of calcite, while collectors are used to enhance the flotation ability of target minerals (such as fluorite). Although this method can achieve separation to a certain extent, its efficiency and selectivity still need to be improved. New flotation separation technology Recently, researchers have proposed a variety of new methods for the flotation separation of calcite and fluorite. For example, some studies have studied the effects of glucose and Al3+ on the flotation separation of calcite and fluorite by means of microflotation experiments, scanning electron microscopy (SEM), solution chemical calculations, X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT). In addition, there are studies that use the regulator PDP to strengthen the DDA system, and achieve effective separation of brucite and calcite by optimizing the operating parameters of the flotation machine and adjusting the type and concentration of the flotation agent. Currently, the sorting technology of calcite is developing rapidly in the direction of high efficiency, environmental protection and intelligence. Through the continuous optimization of chemical agents and novel intelligent sorting technology, the separation efficiency and purity of calcite have been significantly improved, which is of great significance for improving the utilization efficiency of mineral resources and promoting the sustainable development of the mining industry. In the future, with the continuous advancement of science and technology, the sorting technology of calcite is expected to achieve more innovations and breakthroughs. Overall, as a multifunctional mineral, calcite has a wide range of applications. With the continuous development of science and technology, the application areas of calcite will continue to expand, bringing more convenience and contribution to human production and life.
  • Industrial Use and Sorting of Gypsum Industrial Use and Sorting of Gypsum Aug 17, 2024
    Gypsum is a non-metallic mineral with calcium sulfate as the main component. It is usually white or colorless transparent crystals and has a wide range of application value. The formation of gypsum is closely related to geological action and is usually formed in a sedimentary environment or hydrothermal activity. In a sedimentary environment, gypsum can be precipitated from calcium sulfate in seawater or lake water; in hydrothermal activity, gypsum can be formed by cooling and crystallizing hydrothermal fluid containing calcium sulfate underground. Formation process According to the genesis and mineral composition of gypsum, it can be divided into sedimentary gypsum, hydrothermal gypsum and replacement gypsum. Among them, sedimentary gypsum is the most common type, with layered, quasi-layered and lens-shaped forms. Gypsum is widely distributed around the world, especially in Asia, Europe and North America, where reserves and production are relatively concentrated. Asia is one of the main distribution areas of gypsum, especially China, Iran and Thailand, which have more gypsum resources. China has abundant gypsum resources, which are distributed in many provinces across the country. Among them, Shandong Province has particularly outstanding gypsum ore reserves, accounting for 65% of the country's total reserves. Europe is also an important distribution area for gypsum mines. France, Germany, Spain and other countries have a large number of gypsum mine resources. Among these countries, France's gypsum mine production ranks among the top in Europe. North America, especially the United States, is one of the world's largest gypsum producers. The gypsum deposits in the United States are distributed in 22 states, with a total of 69 mines, and the largest production area is Fort Dodge, Iowa. In addition to the above-mentioned regions, countries such as Australia, India and the United Kingdom also have a certain scale of gypsum mine resources. The main component of gypsum ore is calcium sulfate (CaSO4), which usually exists in the form of dihydrate, that is, gypsum (CaSO4·2H2O). Gypsum belongs to the orthorhombic crystal system, and the crystals are plate-shaped or fibrous. The chemical properties of gypsum are stable and it is not easy to react chemically with other substances. However, at high temperatures, gypsum can react with alumina to form calcium aluminum silicate and other compounds. In addition, gypsum can react with acidic substances such as hydrochloric acid to produce sulfur dioxide gas and water. The solubility of gypsum decreases with increasing temperature. It has a low solubility in water, but can be dissolved by acids, ammonium salts, sodium thiosulfate and glycerol. When gypsum is heated at different temperatures, there are three stages of expelling crystal water: 105~180℃, first one water molecule is expelled, and then half of the water molecule is immediately expelled, turning into calcined gypsum, also known as gypsum or semi-hydrated gypsum. 200~220℃, the remaining half of the water molecule is expelled and turned into type III anhydrite. At about 350℃, it turns into type II gypsum Ca[SO4]. At 1120℃, it further turns into type I anhydrite. Melting temperature is 1450℃. The microporous structure and heating dehydration of gypsum and its products make it have excellent sound insulation, heat insulation and fire resistance. As a multifunctional mineral, gypsum is widely used in construction, medicine, agriculture, chemical industry and many other fields. Gypsum plays an important role in the medical, construction, sculpture and other industries with its excellent properties, such as good plasticity, stability, high thermal stability and chemical stability. In the field of construction, gypsum is mainly used for indoor partitions, ceilings, wall materials, etc. Gypsum board is widely used because of its light weight, high strength and easy processing. It can be used as a partition wall, interior wall material, and can also be used to make furniture. In addition, gypsum blocks are also a lightweight and environmentally friendly building material suitable for partition walls and interior walls. In the medical field, gypsum is used to make plaster bandages, fixtures, etc. The fast coagulation and hardening and fast strength growth of gypsum make it an ideal material for post-fracture fixation. In the chemical industry, gypsum can be used as a raw material for the production of sulfuric acid and cement, and can also be used as a quick-acting nitrogen fertilizer in fertilizer production. In addition, gypsum can also be used as a chemical filler in the industrial production of plastics, rubber, coatings, etc. In the agricultural field, medium gypsum can be used as a soil conditioner to adjust the pH of the soil and improve the fertility of the soil. Gypsum is also used in the field of sculpture, and artists use the plasticity of gypsum to create various works of art. In food processing, gypsum powder can be used as a food additive for tofu making, tablet production, etc. With the advancement of science and technology and in-depth research on the properties of gypsum, the application field of gypsum is still expanding. It is particularly noteworthy that as a renewable resource, the use of gypsum in building materials increasingly emphasizes environmental protection and sustainability. For example, industrial by-product gypsum such as desulfurized gypsum and phosphogypsum are reused in building materials, which not only reduces the generation of waste, but also promotes the recycling of resources. There are two main methods of mining gypsum mines: open-pit mining and underground mining. Open-pit mining is suitable for shallow and large-scale deposits. The ore is mined by stripping the covering and mining operations. Underground mining is suitable for deep and small-scale deposits. The ore is mined by opening up tunnels and mining operations. The processing of gypsum mines mainly includes crushing, beneficiation, grinding, calcination and other processes. Crushing is to break the raw ore into small pieces. Crusher such as jaw crusher is used to break the ore into small pieces for subsequent processing. The sorting process of gypsum ore includes many methods: Manual sorting: suitable for small-scale and low-production mining enterprises. Workers sort according to the color and shape of the ore. Heavy medium separation: sorting according to the density difference between the ore particles, suitable for the sorting of coarse-grained gypsum ore. Flotation method: sorting by using the difference in physical and chemical properties between gypsum ore and impurities. By adding flotation agent, gypsum ore floats to the surface of the slurry under the action of bubbles and is separated from impurities. Photoelectric separation: sorting by using the difference in optical properties between ore and impurities. Useful ore and waste rock are separated by photoelectric separator. This method has the advantages of high efficiency and precision, and is suitable for large-scale and high-precision occasions. CCD Sensor Based Ore Color Sorting Machine Mingde Optoelectronics Co., Ltd. was established in 2014. For more than 10 years, it has been professionally developing, designing, manufacturing and selling intelligent sorting equipment for mining. The ore color sorters and artificial intelligence sorters it produces can accurately sort gypsum ore. AI Sorting Machine Among them, the AI ore sorter introduces artificial intelligence technology and big data technology in the field of optoelectronics. It accurately extracts the surface features of ore and impurities such as texture, gloss, shape, color, etc., and forms a model through deep learning. In the subsequent sorting process, the sorted ore is compared and identified, instructions are issued, and pneumatic force is used for precise separation. Practice has proved that the sorting effect of AI intelligent sorting machine is far better than that of traditional optoelectronic ore sorting machine. Heavy Duty AI Ore Sorting Machine Grinding is a step to further reduce the particle size of gypsum to meet the needs of subsequent processing or application. It is usually carried out using equipment such as ball mills. Calcination is to remove moisture and impurities in gypsum and improve its purity and stability. The calcination process includes dry and wet methods. The appropriate process can be selected according to different needs and product requirements. With the advancement of science and technology, especially the development of optoelectronic mineral processing technology, the sorting efficiency and accuracy of gypsum ore have been significantly improved. As a versatile building material, gypsum plays an indispensable role in many fields of modern society. From construction to medicine, to chemical industry and agriculture, the application of gypsum shows its diversity and practicality. With the deepening of gypsum research, the application of gypsum may be more extensive in the future, and it will also pay more attention to environmental protection and sustainability.
  • Current Status and Development Trend of Global Ore Sorting Current Status and Development Trend of Global Ore Sorting Aug 24, 2024
    I. Overview Ore sorting technology refers to the technology of classifying and separating ores by using various sensing technologies and physical property differences. With the advancement of science and technology, ore sorting technology has evolved from traditional manual sorting, mechanical sorting to modern flotation, electric sorting, intelligent sorting and other stages. Ore sorting technology is one of the key technologies in the mining field, which directly affects the utilization efficiency of ore and the economic benefits of enterprises. At present, global ore sorting technology is in a period of rapid development. New technologies such as X-ray fluorescence sorting and near-infrared sorting are being widely studied and applied to improve the efficiency and accuracy of ore sorting while reducing the impact on the environment. II. Current status of global ore sorting technology The development of global ore sorting technology is currently diversified and concentrated. The following is an overview of the development of ore sorting technology in some key countries and regions: North America The United States and Canada have relatively advanced technologies in the field of ore sorting technology, especially in intelligent sorting technology and automated control systems. Europe Europe has also made significant progress in ore sorting technology, especially the research and application of X-ray fluorescence sorting (XRF) and near-infrared sorting (NIR) technologies. These technologies have played an important role in improving the accuracy and efficiency of ore sorting. Asia Ore sorting technology in Asia has developed rapidly, especially China and Japan have invested a lot of R&D resources in ore sorting technology. As the world's largest ore consumer, the development of China's ore sorting technology is of great significance to improving the utilization efficiency of mineral resources and reducing environmental pollution. Japan has outstanding performance in the innovation and application of ore sorting technology. South America Brazil in South America has also made breakthroughs in ore sorting technology, especially in iron ore beneficiation technology. Brazil is an important iron ore producer and exporter in the world, and the development of its ore sorting technology has an important impact on the global market. Africa The development of ore sorting technology in Africa is relatively slow, but with the continuous deepening of resource development, African countries have also begun to pay attention to the research and application of ore sorting technology. Middle East Saudi Arabia and Qatar in the Middle East have also made some progress in ore sorting technology, especially in the mining and sorting of oil and gas resources. III. Global ore sorting development trends With the continuous advancement of science and technology, ore sorting technology is also developing and innovating. Automation and intelligence Automation and intelligence are the main development trends of ore sorting technology. Automation technology can improve the efficiency and accuracy of the sorting process by reducing human intervention. For example, through the automated control system, real-time monitoring and adjustment of ore sorting equipment can be achieved to optimize the overall workflow. Intelligence involves the application of advanced technologies such as artificial intelligence and big data analysis, which can help mining companies make more accurate predictions and analyses of ore properties, thereby improving the effect of mineral processing. Environmental protection and energy saving With the increasingly stringent global environmental regulations, ore sorting technology is developing in the direction of environmental protection and energy saving. For example, biological mineral processing is an emerging environmental protection technology that uses organisms to selectively separate minerals, with the characteristics of low energy consumption and low pollution. In addition, low-carbon emission processes are also a hot topic in current research, which can reduce carbon emissions by adopting new energy equipment or optimizing combustion systems to reduce the use of fossil fuels. Efficient ore sorting equipment The research and development and use of efficient and energy-saving ore dressing equipment is an important branch of ore sorting technology. For example, the advancement of magnetic separator technology, including high-gradient magnetic separation technology and superconducting magnetic separation technology, can not only improve the recovery rate of weakly magnetic iron ore, but also effectively separate non-magnetic impurities and improve the quality of concentrate. The optimization of flotation equipment, such as the introduction of automatic control systems and the development of flotation reagents, is also the key to improving ore dressing efficiency. Comprehensive utilization and waste treatment Resource recycling and waste treatment is another important development direction of ore sorting technology. New tailings treatment technologies, such as tailings dry stacking technology, can effectively avoid the risk of tailings pond collapse and reduce environmental pollution. In addition, the development of tailings processing technology allows some valuable metals to be extracted again from tailings to achieve resource recycling. Since its establishment in 2014, Hefei Mingde Optoelectronics Technology Co., Ltd. has been committed to the research and development, production and sales of ore photoelectric sorting technology and equipment. With the development and major breakthroughs of AI technology, Mingde Optoelectronics has kept up with the world's technological frontier, creatively introduced relevant technologies in the field of ore photoelectric sorting, and launched AI ore sorting machines with better sorting effects, which greatly broadened the scope of application of photoelectric sorting equipment for ores. It has been successfully applied in gold and molybdenum mines, especially in the sorting of pegmatite quartz. AI Intelligent Ore Sorting Machine In 2022, the company further launched an AI heavy-duty intelligent sorting machine, pushing the machine's output to 200 tons/hour, meeting the requirements of mining companies for large-scale ore sorting. Heavy Duty AI Sorting Mahcine Overall, ore sorting technology in various parts of the world has made more or less progress, but due to the complexity and diversity of ore sorting technology and different national conditions of various countries, there are still differences in the development level of various regions. Among them, Europe, the United States and Japan still have technical advantages in the field of ore sorting. China's ore sorting technology has developed rapidly in recent years and has strong practicality and economy. As for the future development trend of ore sorting technology, it will focus on automation and intelligence, environmental protection and energy saving, efficient mineral processing equipment, and comprehensive utilization and waste treatment. The development of these technologies will help improve the utilization rate of ore, reduce production costs, while reducing the impact on the environment and achieving sustainable development of the mining industry.

اترك رسالة

اترك رسالة
إذا كنت مهتمًا بمنتجاتنا وترغب في معرفة المزيد من التفاصيل ، فالرجاء ترك رسالة هنا ، وسنرد عليك في أقرب وقت ممكن.
إرسال

مسكن

منتجات

whatsApp

اتصل